[image:]

BeSt Services User Guide

Date: 31/03/2022
Version: 1.9

[bookmark: _Toc356209518]
		

[bookmark: _Toc5086152][bookmark: _Toc99613930]Version History
	Version
	Date
	Modified by
	Modification

	0.1
	11/02/19
	Gert De Jonge
	First draft

	0.2
	02/04/19
	[bookmark: Svetozar.Misljencevic@jcs.be]Gert De Jonge
	Modifications

	0.3
	16/04/19
	Eddy Corthouts
	Modifications and formatting

	0.4
	16/04/19
	Gert De Jonge
	Added life cycle address objectIdentifier chapter

	0.5
	25/04/19
	Gert De Jonge
	Small modifications

	0.6
	06/05/19
	Gert De Jonge
	Added life cycle ObjectIdentifier for regions

	1.0
	09/05/19
	Gert De Jonge
	Added information MFT services + reshaping the request/response tables + grammar check

	1.1
	14/05/2019
	Gert De Jonge
	Changed filename convention for MFT service

	1.2
	20/06/2019
	Gert De Jonge
	Adjustments release data + removing services that are not yet available + renaming

	1.3
	10/09/2019
	Gert De Jonge
	Updating the lifecycle of an ID matrix

	1.4
	24/10/2019
	Eddy Corthouts
	Update planning dates, update descriptions S354, S355

	1.5
	24/03/2020
	Eddy Corthouts
	Update section 4, ‘MFT services’

	1.6
	18/03/2021
	Eddy Corthouts
	Update section 4, ‘MFT services’ Processing of region files by BOSA, replace figure 1
Update descriptions of BeginLifeSpanVersion and EndLifeSpanversion

	1.7
	29/11/2021
	Eddy Corthouts
	Added section 6, Open data
Updated section 4.2, S350, “Address mutations file service”. Mutations are being reworked to achieve full harmonisation between the different regions.
A new mutations process is planned for release in Q2 2022

	1.8
	31/01/2022
	Eddy Corthouts
	Added Notice in section 4.1, “S350 – AddressMutationsFileService”

	1.9
	31/03/2022
	Eddy Corthouts
	Updated section 2.1, “BeSt identifier life cycle”

[bookmark: _Toc371424098][bookmark: _Toc5086153][bookmark: _Toc99613931]Conventions

	Font
	use

	Italic
	accentuation

[bookmark: _toc271][bookmark: _Toc5086154][bookmark: _Toc99613932]Purpose of this document
This document describes the BeSt Address Web- and MFT services.

[bookmark: _toc273][bookmark: _Toc5086155][bookmark: _Toc99613933]Intended Audience
This document is addressed at any developer or analyst who wants to make use of the BeSt Address services
[bookmark: _Toc275869881]
[bookmark: _Toc5086156][bookmark: _Toc99613934]Contact information

	Service Owner
	Sebastiaan Taes
Sebastiaan.Taes@bosa.fgov.be

	Service Desk
	ServiceDesk@bosa.fgov.be
+32 78 150312
+32 2 2129674

	Service Release Date
	TBD

All BeSt services are subject to the latest BOSA FSB Terms & Conditions, such as described in this document. The document describes the governance principles of the BOSA Service Bus as well.

Table of Contents

Version History	i
Conventions	i
Purpose of this document	i
Intended Audience	ii
Contact information	ii
1	Introduction	1
1.1	BeSt Application Overview	1
1.2	Web services	2
1.3	MFT services	3
2	Data Model	4
2.1	The BeSt Identifier life cycle	8
3	Webservices	10
3.1	S352 - SearchMunicipalityService	11
3.2	S353 - SearchStreetnameService	13
3.3	S354 - SearchAddressService	15
3.4	Webservices – Errors	19
4	MFT Services	20
4.1	S349 - FullDownloadService	20
4.2	S350 - AddressMutationsFileService	23
6	Open Data	30
7	Webservices - Technical	31
7.1	Service access parameters	31
8	Known issues	32
8.1	Flanders	32
8.2	Brussels	32
8.3	Wallonia	32
Document Information	33
General	33
Approbation	33
Distribution	33

List of Tables
Table 1, ‘BeSt Identifiers Life Cycle Model’	9
Table 2, ‘Simplified Delete mutation table’	26
Table 3, ‘Simplified Add mutation table’	26

List of Figures

Figure 1, ‘BeSt Application Overview’	1
Figure 2, ‘Inspire Address model’	4
Figure 3, ‘Best Services Address Model’	6
Figure 4, ‘Full download data structure’	22
Figure 5, ‘Mutations data structure’	25

2

[bookmark: __RefHeading__58623_608740997][bookmark: __RefHeading__58625_608740997][bookmark: __RefHeading__58627_608740997][bookmark: __RefHeading__58629_608740997][bookmark: __RefHeading__58631_608740997][bookmark: __RefHeading__58633_608740997][bookmark: __RefHeading__58635_608740997][bookmark: __RefHeading__58637_608740997][bookmark: __RefHeading__58639_608740997][bookmark: __RefHeading__58645_608740997][bookmark: __RefHeading__58647_608740997][bookmark: __RefHeading__58649_608740997][bookmark: __RefHeading__58651_608740997][bookmark: __RefHeading__58653_608740997][bookmark: __RefHeading__58655_608740997][bookmark: __RefHeading__66774_483261363][bookmark: __RefHeading__66776_483261363][bookmark: __RefHeading__67878_396431507][bookmark: __RefHeading__67880_396431507][bookmark: __RefHeading__58659_608740997][bookmark: __RefHeading__58663_608740997][bookmark: __RefHeading__58665_608740997][bookmark: __RefHeading__58667_608740997][bookmark: __RefHeading__58669_608740997][bookmark: __RefHeading__58671_608740997][bookmark: __RefHeading__58673_608740997][bookmark: __RefHeading__58675_608740997][bookmark: __RefHeading__58677_608740997][bookmark: __RefHeading__58679_608740997][bookmark: __RefHeading__58681_608740997][bookmark: __RefHeading__58683_608740997][bookmark: __RefHeading__58685_608740997][bookmark: __RefHeading__58687_608740997][bookmark: __RefHeading__58689_608740997][bookmark: __RefHeading__58691_608740997][bookmark: __RefHeading__66778_483261363][bookmark: __RefHeading__66780_483261363][bookmark: __RefHeading__66782_483261363][bookmark: __RefHeading__67882_396431507][bookmark: __RefHeading__66784_483261363][bookmark: __RefHeading__102729_2023911691][bookmark: __RefHeading__58693_608740997][bookmark: __RefHeading__102735_2023911691][bookmark: __RefHeading__58699_608740997][bookmark: __RefHeading__67884_396431507][bookmark: __RefHeading__58679_6087409971][bookmark: __RefHeading__58681_6087409971][bookmark: __RefHeading__58683_6087409971][bookmark: __RefHeading__58685_6087409971][bookmark: __RefHeading__58687_6087409971][bookmark: __RefHeading__58689_6087409971][bookmark: __RefHeading__58691_6087409971][bookmark: __RefHeading__66778_4832613631][bookmark: __RefHeading__66780_4832613631][bookmark: __RefHeading__66784_4832613631][bookmark: __RefHeading__66784_48326136311][bookmark: __RefHeading__58701_608740997][bookmark: __RefHeading__58703_608740997][bookmark: __RefHeading__66796_483261363][bookmark: __RefHeading__66798_483261363][bookmark: __RefHeading__66800_483261363][bookmark: __RefHeading__66802_483261363][bookmark: __RefHeading__66804_483261363][bookmark: __RefHeading__66806_483261363][bookmark: __RefHeading__66808_483261363][bookmark: __RefHeading__66810_483261363][bookmark: __RefHeading__66812_483261363][bookmark: __RefHeading__66814_483261363][bookmark: __RefHeading__66816_483261363][bookmark: __RefHeading__66818_483261363][bookmark: __RefHeading__66820_483261363][bookmark: __RefHeading__66822_483261363][bookmark: __RefHeading__66824_483261363][bookmark: __RefHeading__193218_2023911691][bookmark: __RefHeading__58759_608740997][bookmark: __RefHeading__58761_608740997][bookmark: __RefHeading__58763_608740997][bookmark: __RefHeading__58765_608740997][bookmark: __RefHeading__67888_396431507][bookmark: __RefHeading__31926_1440324308][bookmark: __RefHeading__31928_1440324308][bookmark: __RefHeading__31930_1440324308][bookmark: __RefHeading__58767_608740997][bookmark: __RefHeading__58769_608740997][bookmark: __RefHeading__58773_608740997][bookmark: __RefHeading__58775_608740997][bookmark: __RefHeading__58777_608740997][bookmark: __RefHeading__58779_608740997][bookmark: __RefHeading__58781_608740997][bookmark: __RefHeading__58783_608740997][bookmark: __RefHeading__58785_608740997][bookmark: __RefHeading__58787_608740997][bookmark: __RefHeading__58789_608740997][bookmark: __RefHeading__58791_608740997][bookmark: __RefHeading__58793_608740997][bookmark: __RefHeading__58795_608740997][bookmark: __RefHeading__58797_608740997][bookmark: __RefHeading__58799_608740997][bookmark: __RefHeading__58801_608740997][bookmark: __RefHeading__22951_2066657835][bookmark: __RefHeading__21753_2073571842][bookmark: __RefHeading__58803_608740997][bookmark: __RefHeading__58805_608740997][bookmark: __RefHeading__58807_608740997][bookmark: __RefHeading__58809_608740997][bookmark: __RefHeading__58811_608740997][bookmark: __RefHeading__58813_608740997][bookmark: __RefHeading__67282_608740997][bookmark: __RefHeading__67284_608740997][bookmark: __RefHeading__67286_608740997][bookmark: __RefHeading__67288_608740997][bookmark: _Toc371424102][bookmark: _Toc5086157][bookmark: _Ref5087036][bookmark: _Toc99613935]Introduction

[bookmark: _toc339]BeSt stands for “Belgian Street Codes”. The objective of the BeST Address service project is to provide address services on a federal level that will bundle address information coming from the three regional master data sets.

Following organizations have participated in the development and implementation of BeSt:

•	The National Geographic Institute (NGI)
•	The General Administration of the Patrimony Documentation (AAPD) from the FPS Finance
•	The National Registry (NR) from the FPS Internal Affairs
•	Statistics Belgium from the FPS Economy
•	The Crossroad Bank for Enterprises (CBE) from the FPS Economy
•	The Directorate general Security and Prevention from the FPS Internal Affairs
•	The FPS Governance and Support (BOSA)
•	The Agency for Administrative Rationalization (DAV)
•	The supplier of the universal postal services

1.1 [bookmark: _Toc5086158][bookmark: _Toc99613936]BeSt Application Overview

Each region (Flemish, Brussels, Wallonia) has its’ own address master data set (“authentic source”) that contains the data to uniquely identify all addresses in the region.

The BeST Address service project provides address services that bundle the information of these 3 data sources on a federal level.

[image:]

[bookmark: _Ref6313025][bookmark: _Toc99613786]Figure 1, ‘BeSt Application Overview’

[bookmark: _Hlk8373615]Types of services

Two types of services are available:

· Webservices
· Managed File Transfer Services

The following table provides an overview of the BeSt Address services and their planned availability date:

	Webservices
	Availability Date

	S352 – SearchMunicipalityService
	22/07/2019

	S353 – SearchStreetnameService
	22/07/2019

	S354 – SearchAddressService
	22/07/2019

	
	

	S355 – SearchAddressRepresentationService
	Q4 2022

	S359 – SearchPartOfMunicipalityService
	Q4 2022

	S357 – SearchStreetnameHistoryService
	Q4 2022

	S358 – SearchAddressHistoryService
	Q4 2022

	S356 – AnomalyService
	Q4 2022

	MFT services
	Availability Date

	S349 – FullDownloadService
	15/05/2019

	S350 – AddressMutationsFileService
	Q2 2022

SOAP and REST

Consumers can invoke the BeSt services using SOAP or REST.
The REST version is implemented with XML body (not JSON).

For Brussels and Wallonia, the BeSt webservice requests and replies transit through the respective service bus of these regions (Brussels: FIDUS, Wallonia: BCED).
For Flanders, the requests and replies do not pass via a service bus.

1.2 [bookmark: _Ref6317117][bookmark: _Toc99613937]Web services
The webservices are aimed at customers who want to consult address information on a “request by request” basis.

[bookmark: _Toc5086159]Routing of Webservice requests

The objective of routing BeSt-requests to the right region by BOSA is to reduce the traffic between
BOSA and the backend. If 50% of the requests can be routed, this results in a total reduction of traffic
of 33%.

There are two possible execution scenarios for all webservices:

Without routing:

There is no way to identify the destination region with full certainty. The request is sent to all regions. The individual responses of the regions are joined by BoSa and the combined response is sent to the consumer.

With routing:

The destination region can be identified with certainty. The request is only sent to this region. BOSA receives the response from this region and joins it with an errorOrWarningtype for the other regions:

<xs:enumeration value="007 - Source: No search performed due to routing"/>

If the request contains at least one of the following elements, the destination region can be
identified.

· All Identifier namespaces: namespace of municipalitycode, streetnamecode, addresscode, postalcode, partofMunicipalitycode. If the request contains any Identifier <namespace>, that has an
exact match with the fixed namespace list from the application.

Municipalitycode: objectIdentifier: all municipalitycodes’ <objectIdentifier> if there is an
exact match with a NIScode in the NIS-list of municipalities.

Postalcode: objectIdentifier: all postalcodes’ <objectIdentifier> if there is an exact
match with a postalcode in the postalcode list.

MunicipalityName: All municipalitynames’ <spelling> if there is a match with the spelling in
the NIS-list of municipalitynames that enables BOSA to exclude at least one region.
If there are several elements present in the request that allow routing, the following priority will be
given:

1. Namespace municipality
2. Namespace streetname
[bookmark: 2]3. Namespace address
4. Namespace postalinfo
5. Namespace PartofMunicipality
6. Municipalitycode: objectIdentifier
7. Postalinfo: objectIdentifier
8. MunicipalityName

1.3 [bookmark: _toc356][bookmark: _toc364][bookmark: _Toc5086160][bookmark: _Toc371424106][bookmark: _Toc99613938]MFT services

MFT stands for ‘Managed File Transfer’. The three MFT services allow the user to download address information by means of files. The MFT services are aimed at customers that want to download a lot or all address information.

[bookmark: _Toc5086161][bookmark: _Ref5087037][bookmark: _Toc99613939]Data Model

The next diagram shows the underlying data model which the services’ requests and responses are based on.
The model is based on the European Inspire data model.
The INSPIRE Directive aims to create a European Union spatial data infrastructure for the purposes of EU environmental policies and policies or activities which may have an impact on the environment. This European Spatial Data Infrastructure will enable the sharing of environmental spatial information among public sector organizations, facilitate public access to spatial information across Europe and assist in policy-making across boundaries.
For more information on the address theme, please refer to https://inspire.ec.europa.eu/Themes/79/2892

[bookmark: _Toc99613787]Figure 2, ‘Inspire Address model’
	BeSt_Services_UserGuide_v1.9.docx	1

[image:]
[image:]

[bookmark: _Ref6313091][bookmark: _Toc99613788]Figure 3, ‘Best Services Address Model’

Below the Enterprise Architect EAP file, for better comprehension:

The Address entity is the central entity in the model: every entity is attached to it.
An address is a collection of other entities like a Street, a Municipality, possibly a part-of-municipality (only Wallonia) and a Postal info.
As we look at the model, we can see following relations:
· Every address has a street
· Every address has a municipality
· Every address has a postal code
· Every part of municipality has a municipality
· Every street has a municipality

In the Inspire based model we can see that a logical relation in real life: the link between a postal code and a municipality, is not present. This means that we cannot derive a postal code from a municipality and vice versa.
The address representation entity is a summary of an address: it will give you all the essential attributes of an address in full writing (so no pointers to objectIdentifiers)
Each attribute has a functional meaning and some of them only allow certain values. This is further clarified in the sections that explain the services. Each response is fully detailed and contains all attribute explanations.

[bookmark: _Toc7790308]

2.1 [bookmark: _Toc99613940]The BeSt Identifier life cycle

In general

Below, the global definition (taken from the data model) of an Identifier in BeST:
[image:]

An Identifier (of any kind) is composed of 3 attributes:
· namespace
· objectIdentifier
· versionIdentifier

These 3 fields uniquely identify a street, a municipality, an address,…
A versionIdentifier could be a datetimestamp (as Wallonia and Flanders do) or just a number (like Brussels does).

Example of an address Identifier:
Namespace: https://data.vlaanderen.be/id/adres
objectIdentifier: 12345
versionIdentifier: 18/04/2019 12:35

[bookmark: _Hlk8373725]The persistence of a BeSt address Identifier

The BeSt address identifier is not persistent over time, it can change in certain situations. The regions are owner of the address data and therefore decide the business processes concerning the persistence of an address Identifier. Those business processes differ amongst the regions.
NOTE: when an Identifier changes, it could mean:
· the namespace changes
· the objectIdentifier changes
· the version changes

A namespace change will be rare and require careful planning. Objectidentifier and version changes on the other hand occur frequently.

The next table shows possible changes to the different objects and the resulting impact on other objects

	
	Changed element
	Impact on Address identifier
(=BeSt identifier)
	Impact on Address Component identifier (Streetname)
(=BeSt identifier)
	Impact on Address Component identifier (Municipality, PostalInfo, PartOfMunicipality)
(=BeSt identifier)

	Address
	addressCode
(=BeSt identifier)
	Change
	
	

	
	houseNumber
	Change
	
	

	
	houseNumber (correction) (*)
	Change
	
	

	
	boxNumber
	Change
	
	

	
	boxNumber (correction)
	Change
	
	

	
	addressPosition
	Change
	
	

	
	addressStatus
	Change
	
	

	Municipality
	municipalityCode
(=BeSt identifier)
	Change
	Change
	Change

	
	municipalityName.spelling
	
	
	N/A

	
	municipalityName.spelling (correction)
	Has change in bestidentifier or only on element municipalityCode (**)
	no bestidentifier change Only update on element isAssignedBy
	Change (**)

	
	municipalityStatus
	TBD (Future phase)(***)
	TBD (Future phase)(***)
	TBD (Future phase) (***)

	Streetname
	streetnameCode
(=BeSt identifier)
	Change
	Change
	

	
	streetname.spelling
	Change
	Change
	

	
	streetname.spelling (correction)
	Change
	Change
	

	
	streetnameStatus
	Change
	Change
	

	
	homonymAddition
	Change
	Change
	

	PostalInfo
	postcode
	Change
	
	Change

	
	postname
	
	
	N/A

	
	postStatus
	TBD (Future phase) (***)
	
	TBD (Future phase) (***)

	PartOfMunicipality
	partOfMunicipalityCode
(=BeSt identifier)
	Change
	
	Change

	
	partOfMunicipalityname.spelling
	
	
	N/A

	
	partOfMunicipalityname.spelling (correction)
	Change
	
	Change

	
	partOfMunicipalityStatus
	Change
	
	Change

[bookmark: _Toc99613783]Table 1, ‘BeSt Identifiers Life Cycle Model’

(*) These are small changes applied to a string where a human being can unambiguously conclude that the same thing is targeted (spelling/typo/cosmetic corrections, but no fundamental change).Corrections on address are still under investigation with the

(**) FL updates version of Municipality but does not update the address (as in their applications, the version ID is not part of the unique key in their system) but We do so we send an update of the address with the new versionId of the Municipality but no new version of the address.

[bookmark: _Toc65844247][bookmark: _Toc65855536][bookmark: _Toc65855558][bookmark: _Toc5086162][bookmark: _Ref5087038][bookmark: _Ref5087039][bookmark: _Ref5087040](***) Possible future input

[bookmark: _Toc99613941]Webservices

Below, the following webservices are described in detail:

· S352 - SearchMunicipalityService
· S353 - SearchStreetnameService
· S354 - SearchAddressService

The following principles apply for all webservices:

· Unless routing can be applied (see section 1.2), each webservice will perform its search by accessing 3 sources. These sources represent the 3 regions in Belgium: Flanders, Brussels and Wallonia.
· All webservices follow the principle that when an objectIdentifier is given (in the request), the response will contain the last version of that objectIdentifier (when there is no versionnumber specified in the request)
· Empty requests (no search attributes present) will result in an “nothing found” business error for each region.
The response is either a successful response when results have been found, a business error response or a technical error response.

[bookmark: _toc366][bookmark: _Toc5086163]

3.1 [bookmark: _Toc99613942]S352 - SearchMunicipalityService

This service returns a municipality or a list of municipalities based on the search criteria provided.
Basic concepts
The service logic is based on the AND operator.
This means that the search is being performed using ALL filled out parameters. So, if the user fills out the objectIdentifier of the municipality and (a part of) a name, the search logic will use these 2 parameters in combination to search for the right municipality.
Example: when the users fills out ‘Brussels’ and ‘2342’, the search logic uses these parameters in an AND clause: searching for municipalities with name = ‘Brussels’ AND ObjectIdentifier = 2342

Request
	Input parameter

	Description
	Type

	Identifier
	
	Identifiersearchtype

	Identifier:nameSpace
	Namespace of the municipalityCode. Assigned per region.

	NameSpace

	Identifier:objectIdentifier
	The NIS code of the municipality.
	String

	Identifier:versionIdentifier
	The version Identifier of the municipalityCode
	String

	municipalityName
	
	GeographicalNameSearchType

	municipalityName:spelling
	Here the user can fill out (a part of) the name of the municipality
	String

	municipalityName:language
	Language of the municipalityName (or part of) : GeographicalName. Dutch, French or German
	LanguageCodeValueType

	muncicipaliltyName:searchType
	The type of search that has to be performed on the spelling of the municipalityName: ‘contains’, ‘equals, ‘phonetic’
	SearchType

Response
	Output parameter
	Description
	Type
	Min. Occurs
	Max. Occurs

	municipalityCode
	
	IdentifierType
	1
	1

	municipalityCode: namespace
	namespace of the municipality
	charStringType
	1
	1

	municipalityCode: objectIdentifier
	objectIdentifier of the municipality (NIS code)
	charStringType
	1
	1

	municipalityCode: versionIdentifier
	versionIdentifier of the municipality
	charStringType
	0
	1

	municipalityName
	
	GeographicalNameType
	0
	n

	municipalityName: language
	Language of the municipality
	LanguageCodeValueType
	1
	1

	municipalityName: spelling
	The municipality name
	String
	1
	1

3.2 [bookmark: _Toc5086164][bookmark: _Toc99613943]S353 - SearchStreetnameService

This service returns a street with its attributes or a list of streetnames based on the search criteria provided.
Basic concepts
[bookmark: _Toc479921985][bookmark: _Toc498940411][bookmark: _Toc852791][bookmark: _Toc862893][bookmark: _Toc868379][bookmark: _Toc1029006][bookmark: _Toc5083005]The service logic is based on the AND operator.
This means that the search is being performed using ALL filled out parameters. So if the user fills out the objectIdentifier of the street and (a part of) a name, the search logic will use these 2 parameters in combination to search for the right municipality.
Example: when the users fills out the name ‘Stationstraat’ and ObjectIdentifier ‘2342’, the search logic uses these parameters in an AND clause: searching for streets with name = ‘Stationstraat’ AND ObjectIdentifier = 2342
Request
	Input parameter
	Description
	Type

	Language
	The language that will be used for retrieving the street
	LanguageCodeValueType

	municipalityCode
	
	Identifiersearchtype

	municipalityCode: namespace
	Namespace of the municipalityCode. Assigned per region.

	NameSpace

	municipalityCode: objectIdentifier
	The code of the municipality.
	String

	municipalityCode: versionIdentifier
	The version Identifier of the municipalityCode
	String

	streetName
	
	GeographicalNameSearchType

	streetName: spelling
	Spelling of the streetName (or part of)
	String

	streetName: language
	Language of the streetName: Dutch, French or German
	LanguageCodeValueType

	streetName: SearchType
	The type of search that has to be performed on the spelling of the streetName: ‘contains’, ‘equals, ‘phonetic’
	SearchType

	streetNameCode
	
	Identifiersearchtype

	streetNameCode: namespace
	Namespace of the streetnameCode. Assigned per region.
	NameSpace

	streetNameCode: objectIdentifier
	The objectIdentifier of the Streetname.
	String

	streetNameCode: versionIdentifier
	The version Identifier of the streetCode
	String

	streetNameStatus
	4 possible statuses:
· Proposed
· Reserved
· Current
· Archived
	StreetnameStatusValueType

	streetNameType
	2 possible values:
· Hamlet
· Street
	StreetnameTypeValueType

[bookmark: _Toc479921986][bookmark: _Toc498940412]Response
	Output parameter
	Description
	Type
	Min. Occurs
	Max. Occurs

	homonymAddition
	A homonym for this streetname
	CharStringtype
	0
	1

	streetnameCode
	
	IdenifierType
	1
	1

	streetnameCode: namespace
	Namespace of the street
	CharStringtype
	1
	1

	streetnameCode: objectIdentifier
	Objectidentifier of the street
	CharStringtype
	1
	1

	streetnameCode: versionIdentifier
	Versionidentifier of the street
	CharStringtype
	0
	1

	Streetname
	
	GeographicalNameType
	1
	n

	streetName: spelling
	Name of the street
	String
	1
	1

	streetname: language
	Language
	LanguageCodeValueType
	1
	1

	streetnameStatus
	
	streetnameStatusType
	1
	1

	streetnameStatus:
Status
	The status of the street
	streetnameStatusvalueType
	1
	1

	streetnameStatus: validFrom
	Begin date of the status
	dateTime
	1
	1

	streetnameStatus: validTo
	End date of the status
	dateTime
	0
	1

	streetnameType
	Type of street
	streetNameTypeValueType
	1
	1

	isAssignedBy : Municipality
	
	LinkType
	0
	1

	Municipality:
namespace
	Namespace of the municipality
	CharStringtype
	1
	1

	Municipality : objectIdentifier
	objectIdentifier of the municipality
	CharStringtype
	1
	1

	Municipality: versionIdentifier
	versionIdentifier of the municipality
	CharStringtype
	0
	1

	isAssignedTo: RoadObject
	
	RoadObject (LinkType)
	0
	n

	isAssignedTo: streetSide
	
	SideCodeValueType
	0
	n

	Beginlifespanversion
	 date and time at which this version of the object was inserted or changed in the database
	DateTime
	1
	1

	Endlifespanversion
	 date and time at which this version of the object was superseded or retired in the database
	Datetime
	0
	1

Note: the values for attributes isAssignedTo:RoadObject and isAssignedTo:streetSide are not (yet) present in the responses. Neither is this information present in the full download.

3.3 [bookmark: _Toc5086165][bookmark: _Toc99613944]S354 - SearchAddressService

This service returns an address with its attributes or a list of addresses based on the search criteria provided. The reply contains pointers to streetname and municipality (not a written description of the streetname nor the municipality).
Basic concepts
The service logic is based on the AND operator.
This means that the search is being performed using ALL filled out parameters. So if the user fills out the objectIdentifier of an address and (a part of) a streetname, the search logic will use these 2 parameters in combination to search for the right address.
Example: when the users fills out ‘Stationsstraat’ and housenumber ‘22’, the search logic uses these parameters in an AND clause: searching for addresses with streetname = ‘Stationsstraat’ AND housenumber = 22
Note:
The concept “Part of Municipality” is only used in Wallonia. Brussels and Flanders do not have ‘part of municipality’ in their data. Officially, this concept does not exist anymore in these 2 regions. This means that, whenever there is a request that contains a ‘part-of-municipality name’ or ‘part-of-municipality ID’, the response will be empty and the following error will be returned: “this concept is not available for Flanders/Brussels”.
[bookmark: _Toc852793][bookmark: _Toc862895][bookmark: _Toc868381][bookmark: _Toc1029008][bookmark: _Toc5083007]

Request
	Input parameter
	Description
	Type

	addressCode
	
	IdentifierSearchType

	addressCode: namespace
	Namespace of the address
	NameSpace

	addressCode: objectIdentifier
	objectIdentifier of the address
	String

	addressCode: versionIdentifier
	VersionIdentifier of the address
	String

	addressStatus
	4 possible values:
· Current
· Proposed
· Reserved
· Retired
	AddressStatusValueType

	boxNumber
	Boxnumber
	String

	houseNumber
	Housenumber
	String

	municipalityCode
	
	IdentifierSearchType

	municipalityCode: namespace
	Namespace of the municipality. Assigned per region.
	NameSpace

	municipalityCode: objectIdentifier
	The code of the municipality.
	String

	municipalityCode: versionIdentifier
	The version Identifier of the municipalityCode
	String

	municipalityName
	
	GeographicalNameSearchType

	municipalityName: spelling
	Spelling of the municipalityname (or part of)
	String

	municipalityName: language
	Language of the municipality: Dutch, French or German
	LanguageCodeValueType

	municipalityName: SearchType
	The type of search that has to be performed on the spelling of the municipalityName: ‘contains’, ‘equals, ‘phonetic’
	SearchType

	PartOfMuniciaplityCode
	
	IdentifierSearchType

	partOfMunicipalityCode: namespace
	Namespace of the partOfMunicipalityCode. Assigned per region.

	NameSpace

	partOfMunicipalityCode: objectIdentifier
	The objectIdentifier of the partOfMunicipality.
	String

	partOfMunicipalityCode: versionIdentifier
	The version Identifier of the partOfMunicipalityCode
	String

	PartOfMunicipalityName
	
	GeographicalNameSearchType

	partOfMunicipalityName: spelling
	Spelling of the part-of-mun (or part of)
	String

	partOfMunicipalityName: language
	Language of the part-of-mun: Dutch, French or German
	LanguageCodeValueType

	partOfMunicipalityName: SearchType
	The type of search that has to be performed on the spelling of the part-of-mun name: ‘contains’, ‘equals, ‘phonetic’
	SearchType

	postCode
	
	IdentifierSearchType

	postCode:
namespace
	NameSpace of the postcode
	NameSpace

	postCode:
objectIdentifier
	objectIdentifier of the postcode
	String

	PostCode: VersionIdentifier
	versionIdentifier of the postcode
	String

	streetName
	
	GeographicalNameSearchType

	
	
	

	streetName:
spelling
	Spelling of the streetName (or part of)
	String

	streetName:
language
	Language of the streetName: Dutch, French or German
	LanguageCodeValueType

	streetName:
SearchType
	The type of search that has to be performed on the spelling of the street name: ‘contains’, ‘equals, ‘phonetic’
	SearchType

	streetNameCode
	
	Identifiersearchtype

	streetNameCode: namespace
	Namespace of the streetName. Assigned per region.
	NameSpace

	streetNameCode: objectIdentifier
	The objectIdentifier of the Streetname.
	String

	streetNameCode: versionIdentifier
	The version Identifier of the streetname
	String

[bookmark: _Toc852794][bookmark: _Toc862896][bookmark: _Toc868382][bookmark: _Toc1029009][bookmark: _Toc5083008]
Response

	Output parameter
	Description
	Type
	Min. Occurs
	Max. Occurs

	addressCode
	
	IdentifierType
	1
	1

	addressCode: NameSpace
	Namespace of the address
	CharStringType
	1
	1

	addresscode: ObjectIdentifier
	ObjectIdentifier of the address
	CharStringType
	1
	1

	addressCode: versionIdentifier
	versionIdentifier of the address
	CharStringType
	0
	1

	addressPosition
	
	GeographicalPositionType
	1
	1

	addressPosition: PointGeometry:gml:Point: gml:Id
	Identifier of the point
	Gml:PointType
	1
	1

	addressPosition: PointGeometry:gml:Point: gml:pos
	Position of the point
	DirectPositionType
	1
	1

	addressPosition: positionGeometryMethod
	The manner how this point was defined

	PositionGeometry-MethodValueType
	1
	1

	addressPosition: positionSpecification
	The object on which the point was defined
	PositionSpecification-ValueType
	1
	1

	Addresssortfield
	Transformation of the house number and the box number (eg. By adding extra 0’s before) so this value can be sorted
	CharStringType
	0
	1

	addressStatus
	
	AddressStatusType
	1
	1

	addressStatus:
status
	Status of the address
	AddressStatusValueType
	1
	1

	addressStatus:
validFrom
	Begin date of the status
	dateTime
	1
	1

	addressStatus:
validTo
	End date of the status
	dateTime
	0
	1

	boxNumber
	The box number associated to the address, if any.
	CharStringType
	0
	1

	houseNumber
	The house number associated to the address
	CharStringType
	1
	1

	officiallyAssigned
	Declares if the address is officialy granted (True/False)
	Boolean
	1
	1

	hasStreetname: streetName
	
	LinkType
	1
	1

	streetName:
namespace
	Namespace of the street
	CharStringType
	1
	1

	streetName: objectIdentifier
	objectIdentifier of the street
	CharStringType
	1
	1

	streetName: versionIdentifier
	versionIdentifier of the street
	CharStringType
	0
	1

	hasMunicipality: Municipality
	
	LinkType
	1
	1

	municipality:
namespace
	Namespace of the municipality
	CharStringType
	1
	1

	municipality: objectIdentifier
	objectIdentifier of the municipality
	CharStringType
	1
	1

	municipality: versionIdentifier
	versionIdentifier of the municipality
	CharStringType
	0
	1

	hasPostalInfo: PostalInfo
	
	LinkType
	1
	1

	postalInfo:
namespace
	Namespace of the postalInfo
	CharStringType
	1
	1

	postalInfo: objectIdentifier
	objectIdentifier of the postalInfo
	CharStringType
	1
	1

	postalInfo: versionIdentifier
	versionIdentifier of the postalInfo
	CharStringType
	0
	1

	isAssignedTo addressable object
	(Foreseen for later stages of project)
	LinkType
	0
	n

	isSituatedIn: PartofMunicipality
	
	LinkType
	0
	1

	partOfMunicipality:
namespace
	Namespace of the part-of-mun
	CharStringType
	1
	1

	partOfMunicipality: objectIdentifier
	objectIdentifier of the part-of-mun
	CharStringType
	1
	1

	partOfMunicipality: versionIdentifier
	versionIdentifier of the part-of-mun
	CharStringType
	0
	1

	Beginlifespanversion
	date and time at which this version of the object was inserted or changed in the database
	dateTime
	1
	1

	Endlifespanversion
	date and time at which this version of the object was superseded or retired in the database
	dateTime
	0
	1

3.4 [bookmark: _Toc7790315][bookmark: _Toc99613945]Webservices – Errors

Below, the errors that may occur when using the webservices are listed.
The errors are divided into technical errors and business errors

Technical errors
001 – Main Error: Back-end not yet available
Occurs when one of the sources (or all) is not available due to network or other problems.
002 – Main Error: minimum parameters not filled in
003 – Main Error: WSDL Validation
004 – Main Error: XSD Validation
Occurs when the request is not valid against the predefined XSD. This could mean that an attribute is wrongfully used or is missing when it should be present.

Business errors
005 – Source: Too many results
Occurs when the request has too many results to send through the service. Further specification in the request could solve this.
Note:: this is an error that the regions throw when the amount of results transcends the limit that is set. Example: when a region sets its limits at 100 responses and the request has a result of 102 responses, this error will be thrown.
006 – Source: Nothing found
Occurs when the parameters in the request do not produce a response (or an empty response)
007 – Source: No search performed due to routing
Occurs when the request contains a parameter that can be used to route the request towards one region. The other regions will throw this error.
008 – Source: Back-end error
Occurs when an unexpected problem happened on the side of the source
009 – Source: Time out
Occurs when the request has been launched towards one (or more) regions but the response takes too much time to be sent back.
010 – Flanders and Brussels do not support searches based on ‘part-of-municipality’.
Occurs when a request is launched containing ‘part-of-municipality’. Flanders and Brussels do not support this so BOSA will throw this error for those 2 regions.

4 [bookmark: _Toc7790316][bookmark: _Toc99613946]MFT Services

Below, the following MFT services are described in detail:
· S349 - FullDownloadService
· S350 - AddressMutationsFileService

Availability for Consumer

The files will be available on the BOSA server for downloading at the following time:

	Service
	File Name
	Frequency
	Time

	S349 – FullDownloadService
	FDBelgiumxxxxxxxx.zip
	Weekly
	Monday 02:00 AM

	S350 - AdresMutationsFileService
	MBelgiumxxxxxxxx.zip
	Daily on weekdays
	Tue, We, Th, Fr – 02:00 AM

Important: it is necessary that every client that uses the Full Download uses the mutations . All the changes that were made during the week (between two full download dates) will be available in the mutations and spatial transactions. These are necessary to keep one’s own address database up-to-date.

Retention Policy
BOSA keeps the BeSt download files available for 30 days.

Processing of incoming Region files by BOSA

Processing of Region files by BOSA
BOSA will pick up 1 full download per week on Sundays from 23:00 PM from each of the regions.
BOSA will pick up mutations on a daily basis (week days) from 23:00 onwards
BOSA does not delete the files from the region pick-up sites.

BOSA will prepare the consumer download files by 01:00

BOSA processing of Region files encompasses:
· validate the files are conform with the XSD’s
· zip the files into a single zip file for downloading by consumers
· This process takes about 15 min.
As the files are processed in the night, it is assumed that no mutations can occur during the update window.

4.1 [bookmark: _Toc7790317][bookmark: _Ref88837685][bookmark: _Ref88837694][bookmark: _Toc99613947]S349 - FullDownloadService

Main functionality

The Full Download allows a user to download by means of MFT a zip file that contains one file for each entity of the BeSt data model per region. These files contain for each Region the latest versions of the following entities:
· municipalities
· streetnames
· addresses
· partofmunicipalities (Wallonia only)
· postalinfo

Each region produces 5 separate files containing the latest version of that specific entity. If on a certain day, no files would be received from a region for one or more entities, BOSA will place the previous version received in the BeSt full download for those entities.

Data Structure of files

The files are structured and based on the BeST address model (see section 2) but in a slightly different manner:

[image:]
[bookmark: _Toc99613789]Figure 4, ‘Full download data structure’
File Naming Conventions

Region files
Each region produces 4 separate files:
The name of the files follows the following convention: RegionName+ entity + date + coordinate-system (e.g. L72)

Example for Brussels:
· BrusselsAddress20190319L72.zip
· BrusselsMunicipality20190319L72.zip
· BrusselsPostalinfo20190319L72.zip
· BrusselsStreetname20190319L72.zip

There is one additional file that only Wallonia provides, but not the other regions:
WalloniaPartOfMunicipalityxxxxxxxx.zip

BOSA files
BOSA combines the zipfiles from the 3 regions into a single zipfile.
The naming convention for BOSA’s zipfile is
	“BestAddress_” + UseCaseName (abbreviation) + ‘Belgium’ + Date
	Full Download: example: BeStAddress_FDBelgium20200319.zip

4.2 [bookmark: _Toc7790318][bookmark: _Toc99613948]S350 - AddressMutationsFileService

*** Notice: The mutations are currently being reworked in order to ensure full harmonisation between the different regions. Spatial transactions will be included in the regular mutations processing. The new mutations process is planned for release in Q2 2022. This section will be updated at that time ***

Main functionality

Mutations are Insert, Update and Delete transactions to an individual address record. Mutations are made available on a daily basis and users can use them a complement to the weekly full download to keep their own address database up-to-date on a daily basis.
Each region produces a single mutations file containing the mutations for all objects (addresses, streetNames, Municipalities, PostalInfo, partOfMunicipalities)
Each regions produces 1 mutation file per day. If no mutations are present, an empty but XSD valid XML file is provided by the region. The provided mutation file contains the mutations for all 5 entities (munitipalities, part of municipalities (optional), streetnames, addresses and postalinfo).

Types of mutations

A mutation is the creation of a new record, the update of an existing record, or the archiving of a record.

· Add
An add takes place when a new record is created.
Example: A new address or a new Streetname is created.
· Delete
When an Identifier is in the Delete table, it means it is no longer used by the region.
It is up to the clients’ interpretation and business logic to determine whether this should result in a physical delete or a logical delete.
Example: An address will not be used anymore.
· Update
This is when an Identifier appears in the Add and the Delete table. An update takes place when non-identifying information to a record is changed.
Example: The status of a Streetname is changed from ‘proposed’ to ‘current’

Structured file of mutations of addresses

The Insert, Update and Archive operations will be constructed on the basis of two data types:

· Table ‘Addobjectversion’ will contain all versions of records that need to be added in the clients’ copy
· Table ‘Deleteobjectversion’ will contain all records that need to be deleted.

In this way, the 3 types of mutations can be constructed:

· Add
If a record is shown in the ‘Add’ table only, the record is new and needs to be created for the first time by the client.

· Delete
If a record is shown in the ‘delete’ table only, the record can be deleted by the client. In the back-end, this can have the meaning of ‘status = archived’ or of a delete of a record (for instance, because of serious errors in the record).

· Update
If a record with the same unique ObjectIdentifier appears both in the ‘delete’ and in the ‘Add’ table, this means an update of the record. The ‘old’ version can be deleted and replaced by the updated version.

[image:]
[bookmark: _Toc99613790]Figure 5, ‘Mutations data structure’

Example:

	Address: ObjectIdentifier

	12

	34

	45

	89

[bookmark: _Toc99613784]Table 2, ‘Simplified Delete mutation table’

[image:]

[bookmark: _Toc99613785][bookmark: _Toc5086167]Table 3, ‘Simplified Add mutation table’

These two tables allow to infer the following mutations:

a. Insert
Record 67: The record only occurs in the ‘Add’ table. It will be added to the client’s copy.

b. Update
Record 12, 34, 45: These records appear in the ‘Delete’ AND in the ‘Add’ table. So, the older version of the record is replaced by a new version.

c. Delete
Record 89: This record only appears in the ‘Delete’ table.

[bookmark: _Toc7790320]File naming conventions

Similar rules apply as for the Full Download. For each service, each Region will deliver 4 zipped files (and Wallonia 5):

Region files
The same naming convention as for the full download applies.

BOSA files
The naming convention for BOSA’s zipfile is
	“BestAddress_” + UseCaseName (abbreviation) + ‘Belgium’ + Date
	Mutations: example: BeStAddress_MBelgium20200312.zip
5

Processing of mutations (and spatial transactions)

Processing sequence

The processing of the mutations and spatial transaction files should take place in a specific sequence:
1. Process all the ‘deletes’ (mutation files) in the following order.
a. Address
b. Streetname
c. PartofMunicipalty
d. Postalcode
e. Municipalities

2. Process all the ‘add’ (mutation files)
a. Municipalities
b. Postalcode
c. PartofMunicipalty
d. Streetname
e. Address

3. Process the Spatial Transactions:
a. Substitutions
b. Mergers
c. Splits

[bookmark: _Toc7790324]Errors

Whenever there is an error concerning the MFT services, it would result in a missing file for a certain region.
This could be a one-time event or a recurring error.
In every case, the client will only see that there are files missing.
If this is the case, BOSA will contact the responsible region(s) to solve the problem.

6 [bookmark: _Toc99613949]Open Data

De full download, beschreven hierboven in sectie 4.1, “S349 - FullDownloadService” is ook beschikbaar op het BOSA OpenData platform.

Het bestand wordt wekelijks (maandagochtend) gekopieerd van de MFT naar de opendata website en heeft steeds volgende naam:

Mutaties worden niet gekopieerd naar de open data website, om die te downloaden is een toegang tot de MFT server nodig.

7 [bookmark: _Toc99613950]Webservices - Technical

7. [bookmark: _Toc7790326][bookmark: _Toc99613951]Service access parameters

	Endpoint URL (Test & Acceptance)
	https://fsb.services.int.belgium.be/BeStServices/

	Endpoint URL (Production)
	https://fsb.services.pr.belgium.be/BeStServices/

	Message exchange pattern(s)
	Synchronous

	Message protocol
	SOAP+REST

	Transport-level security
	1-way SSL with digital certificate

	Message-level security
	WS-Security X.509 certificate token for Timestamp signing and message body signing

8 [bookmark: _Toc7790327][bookmark: _Toc99613952]Known issues

8. [bookmark: _Toc7790328][bookmark: _Toc99613953]Flanders

The use of a version number or version date timestamp is not yet implemented in Flanders. This will be done in the nearby future (summer 2019).
This means that, for all web services, when there is a version filled out in the request (for address, municipality and/or street) this will result in a ‘nothing found’ business error.
Flanders will use a date timestamp as a version.

8. [bookmark: _Toc7790329][bookmark: _Toc99613954]Brussels

Mutations file will be empty for now as the Brussels municipalities do not yet enter mutations in the application.
There are known ‘bugs’ in the webservices:
SearchMunicipality
· Sending an empty request results in "back-end error" It should be: "006 - nothing found"
· when we demand municipalities containing 'berg' in language DE, we get a back-end error. It should be: "006 - nothing found"
SearchStreetName and SearchAddress

· Sending an empty request results in Brussels returning "too many results" It should be: "006 - nothing found"

8. [bookmark: _Toc7790330][bookmark: _Toc99613955]Wallonia

Address versioning not yet available, planned for Q2 2020
There are known ‘bugs’ in the webservices:
For all webservices:
· "Source: Nothing found" should be "006 - Source: Nothing found"; 27/5: structure of error message still slightly different from design specifications
· If a request is issued with searchType = phonetic (searchType can be ‘contains’, ‘equals', ‘phonetic’), this causes an XSD validation error
[bookmark: _Toc7790331][bookmark: _Toc99613956]Document Information
[bookmark: _Toc7790332][bookmark: _Toc99613957]General
	Authors(s) :
	Gert De Jonge

	Document name:
	BeST WEB Services Userguide

	Location of the document:
	

	Number of pages:
	32

	Version:
	1.3

	
	

	Print date:
	2022/03/31

[bookmark: _Toc7790333][bookmark: _Toc99613958]Approbation
	Nom
	Fonction
	Organisation

	Malik Weyns
	Service Manager
	BOSA

	François Soumillion
	Integration Architect
	BOSA

[bookmark: _Toc7790334][bookmark: _Toc99613959]Distribution
This document will be distributed to:

	Name
	Function
	Organisation
	Objective of distribution

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

[bookmark: _toc1011][bookmark: _toc1012][bookmark: _toc1059][bookmark: _toc1157]
image1.png
DG Digitale Transformatie
FOD Beleid en Ondersteuning

SO DG Transformation digitale
SPF Stratégie et Appui

image2.png
Regions
Application

BR
— Adress DB

FIDUS

Consumer

WAL Adress DB

==

image3.emf
class Address

«featureType»

Address

+ addressCode: Identifier

+ addressPosition: GeographicalPosition

+ houseNumber: CharacterString

+ boxNumber: CharacterString [0..1]

+ addressSortfield: CharacterString [0..1]

+ addressStatus: AddressStatus

+ officiallyAssigned: Boolean

«lifeCycleInfo»

+ beginLifespanVersion: DateTime

+ endLifespanVersion: DateTime [0..1]

constraints

{busnummeradresBestaatNietZonderHuisnummeradres}

{versieBegintijdKleinerDanVersieEindtijd}

«featureType»

AddressableObject

«featureType»

Streetname

+ streetnameCode: Identifier

+ homonymAddition: CharacterString [0..1]

+ streetnameType: StreetnameTypeValue

+ streetname: GeographicalName [1..*]

+ streetnameStatus: StreetnameStatus

«lifeCycleInfo»

+ beginLifespanVersion: DateTime

+ endLifespanVersion: DateTime [0..1]

constraints

{versieBegintijdKleinerDanVersieEindtijd}

«featureType»

PartOfMunicipality

+ partOfMunicipalityCode: Identifier

+ partOfMunicipalityName: GeographicalName [1..*]

«featureType»

StreetSide

+ side: SideCodeValue

«featureType»

RoadObject

+ roadObjectCode: Identifier

«placeholder»

Stand

«placeholder»

MooringPlace

«featureType»

StreetnameStatus::PostalInfo

+ postcode: Identifier

+ postname: GeographicalName [0..*]

«featureType»

Municipality

+ municipalityCode: Identifier

+ municipalityName: GeographicalName [1..*]

«dataType»

AddressRepresentation

+ streetname: CharacterString

+ housenumber: CharacterString

+ boxnumber: CharacterString [0..1]

+ postcode: CharacterString

+ municipalityName: CharacterString

+ completeAddress: CharacterString [0..1]

«featureType»

BuildingUnit

+ buildingUnitCode: Identifier

«featureType»

Parcel

+ parcelCode: Identifier

0..*

hasComponent

1

0..*

isSituatedIn

0..1

0..*

isAssignedTo

0..*

0..*

hasComponent

1

0..*

hasComponent

1

0..*

refersTo

1

0..*

isSituatedIn

1

0..*

isAssignedTo

{maxEenTypeAdresseerbaarobject}

0..*

0..*

isAssignedBy

1

image4.emf
class Address

«featureType»

Address

+ addressCode: Identifier

+ addressPosition: GeographicalPosition

+ houseNumber: CharacterString

+ boxNumber: CharacterString [0..1]

+ addressSortfield: CharacterString [0..1]

+ addressStatus: AddressStatus

+ officiallyAssigned: Boolean

«lifeCycleInfo»

+ beginLifespanVersion: DateTime

+ endLifespanVersion: DateTime [0..1]

constraints

{busnummeradresBestaatNietZonderHuisnummeradres}

{versieBegintijdKleinerDanVersieEindtijd}

«featureType»

Streetname

+ streetnameCode: Identifier

+ homonymAddition: CharacterString [0..1]

+ streetnameType: StreetnameTypeValue

+ streetname: GeographicalName [1..*]

+ streetnameStatus: StreetnameStatus

«lifeCycleInfo»

+ beginLifespanVersion: DateTime

+ endLifespanVersion: DateTime [0..1]

constraints

{versieBegintijdKleinerDanVersieEindtijd}

«featureType»

PartOfMunicipality

+ partOfMunicipalityCode: Identifier

+ partOfMunicipalityName: GeographicalName [1..*]

«featureType»

StreetnameStatus::PostalInfo

+ postcode: Identifier

+ postname: GeographicalName [0..*]

«featureType»

Municipality

+ municipalityCode: Identifier

+ municipalityName: GeographicalName [1..*]

«dataType»

AddressRepresentation

+ streetname: CharacterString

+ housenumber: CharacterString

+ boxnumber: CharacterString [0..1]

+ postcode: CharacterString

+ municipalityName: CharacterString

+ completeAddress: CharacterString [0..1]

0..*

hasComponent

1

0..*

hasComponent

1

0..*

isAssignedBy

1

0..*

refersTo

1

0..*

isSituatedIn

0..1

0..*

hasComponent

1

0..*

isSituatedIn

1

image5.emf
BeSt-Add_20180212.zip

BeSt-Add_20180212.zip

BeSt-Add_20180212.eap

SELECT t_attribute.Object_ID, t_attribute.Name, t_attribute.Scope, t_attribute.Type
FROM t_object INNER JOIN t_attribute ON t_object.Object_ID = t_attribute.Object_ID
ORDER BY t_attribute.Object_ID, t_attribute.Name;

SELECT t_object.Object_ID AS SourceID, t_object.Name AS SourceName, t_object.Object_Type AS SourceType, t_connector.Connector_Type, Object_1.Object_Type AS DestType, Object_1.Name AS DestName, Object_1.Object_ID AS DestID, t_connector.Connector_ID
FROM t_object INNER JOIN (t_connector INNER JOIN t_object AS Object_1 ON t_connector.End_Object_ID = Object_1.Object_ID) ON t_object.Object_ID = t_connector.Start_Object_ID;

SELECT Object_1.Object_ID AS SourceID, Object_1.Name AS SourceName, Object_1.Object_Type AS SourceType, t_connector.Connector_Type, t_object.Object_Type AS DestType, t_object.Name AS DestName, t_object.Object_ID AS DestID, t_connector.Connector_ID
FROM t_object INNER JOIN (t_connector INNER JOIN t_object AS Object_1 ON t_connector.End_Object_ID = Object_1.Object_ID) ON t_object.Object_ID = t_connector.Start_Object_ID;

SELECT t_connector.Name AS ConName, Object_1.Object_ID AS SourceID, Object_1.Name AS SourceName, Object_1.Object_Type AS SourceType, t_connector.Connector_Type, t_connector.Stereotype, t_object.Object_Type AS DestType, t_object.Name AS DestName, t_object.Object_ID AS DestID, t_connector.Notes
FROM t_object INNER JOIN (t_connector INNER JOIN t_object AS Object_1 ON t_connector.End_Object_ID = Object_1.Object_ID) ON t_object.Object_ID = t_connector.Start_Object_ID;

SELECT t_connector.*, t_diagramobjects.Diagram_ID
FROM (t_diagramobjects INNER JOIN t_connector ON t_diagramobjects.Object_ID = t_connector.Start_Object_ID) INNER JOIN t_diagramobjects AS DiagramObjects_1 ON (t_connector.End_Object_ID = DiagramObjects_1.Object_ID) AND (t_diagramobjects.Diagram_ID = DiagramObjects_1.Diagram_ID)
WHERE (((t_connector.DiagramID)=0 Or (t_connector.DiagramID)=[t_diagramobjects].[Diagram_ID]))
ORDER BY t_connector.SeqNo;

select Name from t_object where Object_Type='Class'
UNION select Datatype as Name from t_primitives;

SELECT t_ecf.ECFID, t_ecf.Description, t_ecf.Weight, t_ecf.Value, t_ecf.Notes, [Weight]*[Value] AS ExValue
FROM t_ecf;

SELECT t_package.Package_ID, t_package.Name AS Package, t_connector.End_Object_ID AS ObjectID, Object_1.Name AS ObjectName, Object_1.Object_Type AS ObjectType, t_connector.Connector_Type AS Connector, t_object.Object_ID AS ImplementedByID, t_object.Name AS ImplementorName, t_object.Object_Type AS ImplementorType, t_objecttypes.DesignObject
FROM (t_objecttypes INNER JOIN t_object ON t_objecttypes.Object_Type = t_object.Object_Type) INNER JOIN ((t_connector INNER JOIN t_object AS Object_1 ON t_connector.End_Object_ID = Object_1.Object_ID) INNER JOIN t_package ON Object_1.Package_ID = t_package.Package_ID) ON t_object.Object_ID = t_connector.Start_Object_ID
WHERE (((t_connector.Connector_Type)="Realisation"))
ORDER BY t_package.Package_ID;

SELECT t_diagram.Diagram_ID, t_method.Object_ID, t_method.Name, t_method.Scope, t_method.Type
FROM (t_diagram INNER JOIN t_object ON t_diagram.Diagram_ID = t_object.Diagram_ID) INNER JOIN t_method ON t_object.Object_ID = t_method.Object_ID
ORDER BY t_method.Object_ID, t_method.Name;

SELECT t_diagramobjects.RectTop, t_diagramobjects.RectLeft, t_diagramobjects.RectRight, t_diagramobjects.RectBottom, t_diagramobjects.Diagram_ID, t_diagramobjects.ObjectStyle, t_object.Object_ID, t_object.Object_Type, t_object.Name, t_object.Alias, t_object.Author, t_object.Version, t_object.Note, t_object.Package_ID, t_object.Stereotype, t_object.NType, t_object.Complexity, t_object.Effort, t_object.Style, t_object.BorderStyle, t_object.Backcolor, t_object.CreatedDate, t_object.ModifiedDate, t_package.Name AS PackageName, t_object.Status, t_diagramobjects.Sequence, t_object.Abstract, t_object.Tagged, t_object.BorderWidth, t_object.Fontcolor, t_object.Bordercolor, t_object.PDATA1, t_object.PDATA2, t_object.PDATA3, t_object.PDATA4, t_object.PDATA5, t_object.GenType, t_object.GenFile, t_object.Header1, t_object.Header2, t_object.Phase, t_object.Scope, t_object.GenOption, t_object.GenLinks, t_object.Classifier, t_object.ea_guid, t_object.RunState, t_object_1.Name AS ClassName, t_object.IsRoot, t_object.IsLeaf, t_object.IsSpec, t_object.IsActive, t_object.StateFlags, t_object.PackageFlags, t_object.Multiplicity
FROM t_package INNER JOIN ((t_object LEFT JOIN t_diagramobjects ON t_object.Object_ID = t_diagramobjects.Object_ID) LEFT JOIN t_object AS t_object_1 ON t_object.Classifier = t_object_1.Object_ID) ON t_package.Package_ID = t_object.Package_ID;

SELECT t_object.Object_ID, t_object.Name, t_object.Object_Type AS Type, t_package.Name AS Package, t_objecttypes.DesignObject
FROM t_package INNER JOIN (t_objecttypes INNER JOIN t_object ON t_objecttypes.Object_Type = t_object.Object_Type) ON t_package.Package_ID = t_object.Package_ID
WHERE (((t_objecttypes.DesignObject)=True));

SELECT t_object.Package_ID, t_objecttests.Object_ID, t_objecttests.Test, t_objecttests.TestClass, t_objecttests.TestType, t_objecttests.Notes, t_objecttests.InputData, t_objecttests.AcceptanceCriteria, t_objecttests.Status, t_objecttests.DateRun, t_objecttests.Results, t_objecttests.RunBy, t_objecttests.CheckBy
FROM t_objecttests INNER JOIN t_object ON t_objecttests.Object_ID = t_object.Object_ID;

SELECT Object_1.Name, t_objecttypes.ImageID, t_object.Object_ID, t_package.Package_ID, Object_1.Stereotype, Object_1.Object_Type
FROM ((t_object INNER JOIN t_package ON (t_object.Name = t_package.Name) AND (t_object.Package_ID = t_package.Parent_ID)) INNER JOIN t_object AS Object_1 ON t_package.Package_ID = Object_1.Package_ID) INNER JOIN t_objecttypes ON Object_1.Object_Type = t_objecttypes.Object_Type
WHERE (((t_objecttypes.ImageID)>0));

SELECT t_package.Name AS Package, t_object.Object_ID, t_object.Object_Type, t_object.Diagram_ID, t_object.Name, t_object.Alias, t_object.Author, t_object.Version, t_object.Note, t_object.Package_ID, t_object.Stereotype, t_object.NType, t_object.Complexity, t_object.Effort, t_object.Style, t_object.Backcolor, t_object.BorderStyle, t_object.BorderWidth, t_object.Fontcolor, t_object.Bordercolor, t_object.CreatedDate, t_object.ModifiedDate, t_object.Status, t_object.Abstract, t_object.Tagged, t_object.PDATA1, t_object.PDATA2, t_object.PDATA3, t_object.PDATA4, t_object.PDATA5, t_object.Concurrency, t_object.Visibility, t_object.Persistence, t_object.Cardinality, t_object.GenType, t_object.GenFile, t_object.Header1, t_object.Header2, t_object.Phase
FROM t_package INNER JOIN t_object ON t_package.Package_ID = t_object.Package_ID;

SELECT t_object.Name, t_object.Object_Type AS Type, t_package.Name AS Package, t_connector.End_Object_ID AS ObjectID, t_object.Object_ID AS RealizedByID, t_connector.Connector_Type, t_objecttypes.DesignObject
FROM t_package INNER JOIN ((t_objecttypes INNER JOIN t_object ON t_objecttypes.Object_Type = t_object.Object_Type) INNER JOIN t_connector ON t_object.Object_ID = t_connector.Start_Object_ID) ON t_package.Package_ID = t_object.Package_ID
WHERE (((t_connector.Connector_Type)="Realisation"));

SELECT t_object.Name, t_object.Object_Type AS Type, t_package.Name AS Package, t_connector.Start_Object_ID AS ObjectID, t_object.Object_ID AS RealizedByID, t_connector.Connector_Type, t_objecttypes.DesignObject
FROM t_package INNER JOIN ((t_objecttypes INNER JOIN t_object ON t_objecttypes.Object_Type = t_object.Object_Type) INNER JOIN t_connector ON t_object.Object_ID = t_connector.End_Object_ID) ON t_package.Package_ID = t_object.Package_ID
WHERE (((t_connector.Connector_Type)="Realisation"));

SELECT t_object.Package_ID, t_objectresource.Object_ID, t_object.Name, t_object.Object_Type, t_objectresource.Resource, t_objectresource.Role, t_objectresource.Time, t_objectresource.Notes, t_objectresource.PercentComplete, t_objectresource.DateStart, t_objectresource.DateEnd
FROM t_objectresource INNER JOIN t_object ON t_objectresource.Object_ID = t_object.Object_ID;

SELECT Sum([Weight]*[Value]) AS ECF
FROM t_ecf;

SELECT Sum([Weight]*[Value]) AS TCF
FROM t_tcf;

SELECT t_tcf.TCFID, t_tcf.Description, t_tcf.Weight, t_tcf.Value, t_tcf.Notes, [Weight]*[Value] AS ExValue
FROM t_tcf;

SELECT t_object.Object_Type, t_object.Name, Val([t_object].[Complexity])*Val([ComplexityWeight]) AS Complexity, t_package.Name, t_package.Package_ID, t_object.Phase
FROM t_package INNER JOIN (t_ocf INNER JOIN t_object ON t_ocf.ObjectType = t_object.Object_Type) ON t_package.Package_ID = t_object.Package_ID
WHERE (((t_object.Object_Type)="UseCase" Or (t_object.Object_Type)="Actor"));

SELECT t_object.*, t_objecttypes.Description, t_objecttypes.DesignObject, t_objecttypes.ImageID
FROM t_object INNER JOIN t_objecttypes ON t_object.Object_Type = t_objecttypes.Object_Type
WHERE (((t_objecttypes.ImageID)>0));

PARAMETERS Object Long;
SELECT *
FROM t_attribute
WHERE (((t_attribute.Object_ID)=[Object]))
ORDER BY t_attribute.Pos, t_attribute.Scope, t_attribute.Name;

PARAMETERS Dgm_ID Long, Con_ID Long;
SELECT *
FROM t_diagramlinks
WHERE (((t_diagramlinks.DiagramID)=[Dgm_ID]) AND ((t_diagramlinks.ConnectorID)=[Con_ID]));

PARAMETERS [Object] Long;
SELECT t_diagramobjects.RectTop, t_diagramobjects.RectLeft, t_diagramobjects.RectRight, t_diagramobjects.RectBottom, t_diagramobjects.Diagram_ID, t_diagramobjects.ObjectStyle, t_object.Object_ID, t_object.Object_Type, t_object.Name, t_object.Alias, t_object.Author, t_object.Version, t_object.Note, t_object.Package_ID, t_object.Stereotype, t_object.NType, t_object.Complexity, t_object.Effort, t_object.Style, t_object.BorderStyle, t_object.Backcolor, t_object.CreatedDate, t_object.ModifiedDate, t_package.Name AS PackageName, t_object.Status, t_diagramobjects.Sequence, t_object.Abstract, t_object.Tagged, t_object.BorderWidth, t_object.Fontcolor, t_object.Bordercolor, t_object.PDATA1, t_object.PDATA2, t_object.PDATA3, t_object.PDATA4, t_object.PDATA5, t_object.GenType, t_object.GenFile, t_object.Header1, t_object.Header2, t_object.Phase, t_object.Scope, t_object.GenOption, t_object.GenLinks, t_object.Classifier, t_object.ea_guid, t_object.RunState, t_object_1.Name AS ClassName, t_object.IsRoot, t_Object.IsLeaf, t_Object.IsSpec, t_Object.IsActive, t_object.StateFlags, t_object.PackageFlags, t_object.Multiplicity
FROM t_package INNER JOIN ((t_object LEFT JOIN t_diagramobjects ON t_object.Object_ID = t_diagramobjects.Object_ID) LEFT JOIN t_object AS t_object_1 ON t_object.Classifier = t_object_1.Object_ID) ON t_package.Package_ID = t_object.Package_ID
WHERE (((t_object.Object_ID)=[Object]));

PARAMETERS Object Long;
SELECT *
FROM t_operation
WHERE (((t_operation.Object_ID)=[Object]))
ORDER BY t_operation.Pos DESC, t_operation.Scope, t_operation.Name DESC;

PARAMETERS ID Long;
Select * from q_connections where SourceID=[ID]
UNION Select * from q_connections2 where SourceID=[ID];

PARAMETERS ID Long;
SELECT t_object.*
FROM t_object
WHERE (((t_object.Object_ID)=[ID]));

SELECT t_package.Name AS [t_package Name], t_diagram.Name AS [t_diagram Name], t_diagram.Diagram_Type, t_object.Object_Type, t_object.Name, t_object.Note, t_object.Complexity
FROM (t_package INNER JOIN t_object ON t_package.Package_ID = t_object.Package_ID) INNER JOIN t_diagram ON (t_package.Package_ID = t_diagram.Package_ID) AND (t_object.Diagram_ID = t_diagram.Diagram_ID);

SELECT t_object.Name, t_object.Note
FROM Object
WHERE (((t_object.Note)<>"") AND ((t_object.Object_Type)="UseCAse"));

SELECT t_package.Name AS [t_package Name], t_diagram.Name AS [t_diagram Name], t_diagram.Diagram_Type, t_object.Object_Type, t_object.Name, t_object.Note, t_object.Complexity, IIf([Tagged]=0,'No','Yes') AS Tag
FROM t_package INNER JOIN (t_object INNER JOIN t_diagram ON t_object.Diagram_ID = t_diagram.Diagram_ID) ON (t_package.Package_ID = t_diagram.Package_ID) AND (t_package.Package_ID = t_object.Package_ID)
WHERE (((t_object.Object_Type)="Usecase"));

SELECT Object_1.Name, Object_1.Object_Type, t_object.Object_Type, t_object.Name, t_object.Note, Object_1.Object_ID, t_object.Object_ID
FROM t_object, t_object AS Object_1, Connector
WHERE (((Object_1.Object_Type)="Actor") AND ((t_object.Object_Type)="Usecase") AND ((Object_1.Object_ID)=[Start_Object_ID]) AND ((t_object.Object_ID)=[End_Object_ID]));

SELECT t_package.Package_ID, t_package.Name AS Package, Object_1.Object_ID AS ObjectID, Object_1.Name AS ObjectName, Object_1.Object_Type AS ObjectType, "" AS Connector, "" AS ImplementedByID, "" AS ImplementorName, "" AS ImplementorType, t_objecttypes.DesignObject
FROM t_package INNER JOIN ((t_implement INNER JOIN (t_objecttypes INNER JOIN t_object AS Object_1 ON t_objecttypes.Object_Type = Object_1.Object_Type) ON t_implement.Type = Object_1.Object_Type) LEFT JOIN q_implements ON Object_1.Object_ID = q_implements.ObjectID) ON t_package.Package_ID = Object_1.Package_ID
WHERE (((q_implements.Package_ID) Is Null) AND ((Object_1.Abstract) Is Null Or (Object_1.Abstract)="0"))
ORDER BY t_package.Package_ID;

SELECT t_package.Name AS Package, t_object.Object_ID, t_object.Object_Type, t_object.Name, t_object.Note, t_object.Stereotype
FROM t_package INNER JOIN (t_object LEFT JOIN t_diagramobjects ON t_object.Object_ID = t_diagramobjects.Object_ID) ON t_package.Package_ID = t_object.Package_ID
WHERE (((t_diagramobjects.Object_ID) Is Null));

image6.emf
class Address

«dataType»

Common::Identifier

+ namespace: CharacterString

+ objectIdentifier: CharacterString

«lifeCycleInfo»

+ versionIdentifier: CharacterString

image7.emf
class Full Download

AddResponseBySource

- Timestamp: DateTime

- Source: SourceType

«XSDcomplexType»

Address

«XSDelement»

+ addressCode: IdentifierType

+ addressPosition: GeographicalPositionType

+ addressSortfield: CharstringType [0..1]

+ addressStatus: AddressStatusType

+ boxNumber: CharstringType [0..1]

+ houseNumber: CharstringType

+ officiallyAssigned: boolean

+ hasStreetname: hasStreetname

+ hasMunicipality: hasMunicipality

+ hasPostalInfo: hasPostalInfo

+ isAssignedTo: isAssignedTo [0..*]

+ isSituatedIn: isSituatedIn [0..1]

«XSDattribute»

+ ext_ref11: lifeCycleInfo

«XSDcomplexType»

Municipality

«XSDelement»

+ municipalityCode: IdentifierType

+ municipalityName: GeographicalNameType [0..*]

«XSDcomplexType»

PartOfMunicipality

«XSDelement»

+ partOfMunicipalityCode: IdentifierType

+ partOfMunicipalityName: GeographicalNameType [1..*]

«XSDcomplexType»

Streetname

«XSDelement»

+ homonymAddition: CharstringType [0..1]

+ streetnameCode: IdentifierType

+ streetname: GeographicalNameType [1..*]

+ streetnameStatus: StreetnameStatusType

+ streetnameType: StreetnametypeValueType

+ isAssignedBy: Municipality [0..1]

+ isAssignedTo: isAssignedTo [0..*]

«XSDattribute»

+ ext_ref12: lifeCycleInfo

StreetResponseBySource

- Timestamp: DateTime

- Source: SourceType

PoMResponseBySource

- Timestamp: DateTime

- Source: SourceType

MunResponseBySource

- Timestamp: DateTime

- Source: SourceType

PostalResponseBySource

- Timestamp: DateTime

- Source: SourceType

«XSDcomplexType»

PostalInfo

«XSDelement»

+ postcode: IdentifierType

+ postname: GeographicalNameType [0..*]

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

image8.jpg
casosompermyper

encsaty ityype o]
anofuricoatyverson: com FarCiMunicpartyType [
mresaintoTyoe (0]
stname 0.1

image9.emf
Address: ObjectIdentifier MunicipalityNameCodeStreetNameCodeStreetnamespellingHousenumberBoxNumberVersionbegintime Versionendtime

67 XXX XXX Rue de X XX X timestamp timestamp

12 XXX XXX Rue de Y XX X timestamp timestamp

34 XXX XXX Rue de A XX X timestamp timestamp

45 XXX XXX Rue de B XX X timestamp timestamp

